top of page

Do female athletes take longer than men to recover in sports?

Whenever we run, jump, intercept and do a long-distance event we use our muscle stores of creatinine, glycogen, and fat stores to replenish us with energy. Along with this comes the microdamage in the muscles and the change in the structural integrity of the connective tissues surrounding it. So to perform again the next day, to the best of our abilities and strength we need to refuel all the emptied energy stores and repair the muscle damage. This is what sets the process of "recovery".


What is recovery?

Recovery after any strenuous exercise, physical activity, or a sport session is the time and process required to get the physiological, structural, and psychological parameters back to the baseline levels, for an individual athlete to perform at her best in successive sessions.


What causes the need to recover?


1. Decrease in the energy fuel: Exercise uses the fuel of carbohydrates, fats, and proteins to sustain activity. For short events lasting less than eight seconds, the primary source of energy is the phosphocreatine system while for the increasing intensities and duration of exercise, progressively carbohydrates and fats are utilized. If one continues to run or play with emptied fuel stores the next day, he or she might suffer from an injury or exhaustion.


2. Exercise-Induced Muscle Damage(EIMD): the muscle fibres suffer micro damage i.e. micro tears when they contract in the lengthened position. There is an apparent change in the length of the muscle fibres due to the building up of excess chemicals and edema, causing the muscle to be in a shortened state.


3. The Oxygen Debt: Have you observed that your heart rate and breathing rate speed up at the end of a heavy workout session? This is due to a deficit created in the oxygen supply and need. The contracting muscles need oxygen more during exercise, which is comparatively less than the demand. Hence, when the exercise is stopped, the body tries to replenish extra oxygen which it needs to wash out the waste metabolites in the muscles, also called excess post-exercise oxygen consumption(EPOC). The oxygen consumption is pressurized further if working at high altitudes, with heat stress, and polluted air having other impurities.




Image credit:https://pubmed.ncbi.nlm.nih.gov/33420603/


After understanding what causes the need to recover, one might ask if recovery duration and processes need to be the same for everyone. The answer would be no. Every person is different and also the training session is.

The multidimensional nature of recovery:


Recovery is not only physical, it is physiological which incorporates the use of different body systems to supply energy for the activity, and also psychological where your mind is afresh without any stressors from the previous activity. Hence we can remember the 3 Ps -

Physical, Physiological, and Psychological.


Thus factors contributing to all 3 Ps affect the rate of recovery and most of the interventions targeted to enhance the recovery like sleep, nutrition, and cryotherapy in a way try to influence at least one of the 3 Ps.


Training factors that might affect the recovery:


1. The mode of exercise - strength/power/speed session

2. The length of the training session

3. The difficulty level of tactical training

4. The Heat Stress: Female sex is considered one of the risk factors for heat-related illnesses ranging from cramps to near-fatal heat stroke


Individual factors that might affect recovery:


1. Age - The older one is, the longer it takes to recover

2. Sex - the female sex hormones affect the production of inflammatory blood markers periodically through different phases of the cycle

3. Training with an injury

4. Training with any vitamin, or mineral deficiency. Eg. Vitamin D, Magnesium deficiency are a few examples of minerals responsible for enhancing recovery

5. Training after a long break

6. Training age, status, and fitness levels: Training age is the years since one is following a good training program. Training for a long time adapts the body to handle higher workloads efficiently

7. Nutrition and Sleep: These are the most important factors that aid in growth, repair, and replenishment. Sleep is the time when most of the repair work of the mind and body is done. Eating the right food with a good amount of proteins, carbohydrates and fats help in building the muscles which were used during the training.


What are the markers of recovery?

To know whether the recovery is happening or not we need to have measures to guide us if we are falling short of interventions to recover. These measures are -

1. Biochemical measures: Creatinine Kinase(CK), Insulin-like growth factor 1, Cytokines like Interleukin 6, Urea, Glutamine, lactate, and so on.All of the above chemicals are produced with increased stress on the body and are cleared during the resting state. A continued increase in these markers can suggest delayed recovery from the training load.

2. Endocrine measures: Thyroid Cortisol and Catecholamines(adrenaline, dopamine) give a picture of the total body response to stress and adaptation. Their change in levels in the body is an indication of a prolonged stress response

3. The autonomic tone suggests readiness: Our heart receives nerve supply which speeds up and lowers our heart rate. The system which governs the heart rate rising and slowing, during and after the exercise respectively is the Autonomic nervous system.


The autonomic nervous system further has two subdivisions, sympathetic and parasympathetic systems. The sympathetic system is responsible for flight and responses, increasing the heart rate during exercise. While the parasympathetic system is responsible for the rest and digestion functions, decreasing the heart rate after exercise. The ability to calm down the heart rate after the exercise is governed by parasympathetic nervous system activation. When both these systems are balanced, the athlete shows a lowered Resting Heart Rate (RHR), a higher Heart Rate Variability(HRV), and a faster Heart Rate Recovery(HRR) after the training session. Heart rate being the most accurate and easy-to-monitor parameter gives one of the best predictions of autonomic system function, helping us to understand the recovery of the physiological and psychological state of the athlete.

4. Physical measures: Muscles undergoing micro damage produce inflammatory substances called cytokines, along with other chemicals that give rise to reversible tightness seen as a reduction in range of motion and soreness. These factors can be measured and intervened with massage, mobility, and physiotherapeutic sessions restoring the muscle to its original length and preventing injuries.

5. Neuromuscular measures: The ability to produce force by the muscles is decreased at the end of a match or a training session. This reduction can be measured by performance-based tests like Countermovement Jump(CMJ), Peak Power Output(PPO), or through individual muscle contraction measures like Maximum Voluntary Contraction(MVC) which is the ability to contract a muscle to its maximum force. As the fatigue sets in, the ability of the body to produce force and



control the movement decreases, which requires a period of recovery where the neuromuscular fatigue is reversed.

6. Psychological/Self-reported scales: These measures help in understanding the psychological load and mood states. Their ease of use and application in team sports settings have made them a staple in performance monitoring of psychological recovery.Profile of Mood States (POMS), Total Quality Recovery (TQR), Daily Analysis of life Demands of Athletes(DALDA), and Rate of Perceived Exertion(RPE) are a few examples.


How does sex of an athlete affect recovery?


Sex affects recovery due to varied anatomical and physiological differences. This recovery can be assessed immediately after the exercise which is called short-term recovery. When recovery is assessed after a prolonged time such as 24 hours or more after a bout of exercise it is called long-term recovery. Women have lower muscle mass compared to men hence exercise-induced muscle damage is lesser in females compared to men. Along with that, the muscle fiber diameter is smaller in females, and also the fuel utilized to supply energy for the exercise like proteins, carbs, and fats differ in females due to the effect of the changing hormones during the menstrual cycle.


Short term recovery:


Any activity lasting for less than half an hour can be classified as a short-duration activity. This also has implications for substrate utilization to supply energy which is majorly from phosphate creatinine and anaerobic power systems. Hence the biomarkers used are by testing blood lactate and adenosine levels to estimate short-term recovery. Also, recovery just after an exercise can be measured best with heart rate recovery (HRR), which is the time taken for the heart rate to return to the baseline levels.